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Abstract ~ The non-stationary quadratic quantum system which can be considered as a quantum 
model of a damped oscillator is investigated in the framework ofthe Wigner representation. The 
explicit expressions of the ordinary and smoothed Wigner functions for this system are obtained. 

In the last few years the Wigner-Weyl representation [1,2] has played a very important 
role in the investigation of modem quantum mechanical problems [3-101. For instance, 
with the use of the Wigner function a quantum correction to the classical results can 
be obtained [3]. This representation has served as a very convenient tool for studying 
quantum mechanical systems with quadratic Hamiltonians with respect to the coordinate 
and momentum operators [II-151. The Wigner function allows one to find an average value 
of an arbitrary physical quantity, but it cannot be interpreted as a probability because it can 
take negative values. By smoothing the Wigner function with different weight functions, 
one can ensure its positive definiteness, and the resulting function is known as the smoothed 
Wigner function [17-191. The smoothed Wigner function leads to errors in calculations of 
average values compared with exact quantum mechanical results, but in the classical limit 
it begins to play an essential role. 

In this work, using the results [14-161, we consider in the framework of the Wigner 
representation a quantum system with the Hermitian non-stationary Hamiltonian 

(1) 
with the corresponding equation of motion 

+ o$ ( t )  e2r(f).P) - f ( t )  ezr(*)i fi ( t )  = 1 ( q - 2 i - o )  
2 p  

= pe-2r(o 
= +,2 O ( )  (2) e2r(o, + f ( t )  ,wo 

i + 2 r  ( t ) i  + m i  ( t ) x  = f ( t )  . 
As can be seen from (1) and (Z), the quantum system with this type of Hamiltonian can 
be considered as a quantum analogue of the classical damped forced harmonic oscillator 
with the time-dependent parameters. This equation was considered earlier in many papers. 
For more details on the choice of Hamiltonian and the problem of initial conditions for i& 
see [16] and references therein. 

Let us find the integrals of motion of the system, i.e. the operators f(f) satisfying the 
equation 

[i(a/ar) - 8, f] = o = 1) 
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For one-dimensional quadratic Hamiltonian systems all the integrals of motion can be 
constructed from two independent linear ones. For the present system one has two mutually 
Hermitian conjugate linear integrals of motion satisfying 
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p ( t )  , 'i+ ( t )]  = 1. 

The operator (t) has the form 
I 8 (t)  + - Jz Jz i ( t )  = - ( E  (t) f i  - G ( t )  

8 ( t )  = -iJE(z)eZr([)f(t) d7 

where E ( t )  is a complex function satisfying the equation 

€ + 2l% +U; ( t ) E  = 0 

and the additional relation 

ezr(') ( € E *  + € * E )  = 2i. 

Let us consider an operator of the following form: 

2 (f) = A i +  + f. 
Using equations (3)<5) it is easy to qheck that this operator is also an integral of motion, 
and it has the meaning of a quasi-particle number operator. The eigenfunctions of this 
operator satisfy the Scbradinger equation of the system 

if*" = (?I + a) *n. 
The eigenfunctions @n have the form 

(3) 

(4) 

(5) 

-1 / Im (8p) dz]H. ( x + Re (E*S)  ) 
2 

where the H. (x) are Hermite polynomials. 
The corresponding Wigner function is as follows: 

w,, (p, q )  = 2 (-1)" e-"@)L, (4z ( t ) )  

z ( t )  = $ [ [ ~ l ' p ~ +  1€12e4rxz-2ezrRe(€~*)~p+~m(~*6)p -eZr1m(€*~)x +18l2 

+iezr Re ( :E*) ]  

where the L. ( x )  are Laguerre polynomials. 

U,,,,, of the phase-point hit in the finite domain ApAq of the phase plane: 

U A ~ A ~ = / /  W ( P + P I , ~ + ~ I )  dpldql. 

To determine the smoothed Wigner function it is necessary to consider the 'probability' 

44 
Instead of the exact boundary domain one considers the 'spread' boundary domain by 
introducing the following quantity: 
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This method of obtaining of the smoothed Wigner function is given in more detail in [18,19]. 
Finally, for the smoothed Wigner function we obtain (assuming that A p A q  = f )  

qn ( p , q )  = ; (Uapas), = (2"n!z iAqI4)  
1 -I 

where 

Acknowledgments 

We are very grateful to Professors V I Man'ko and V V Dodonov for numerous discussions 
and suggestions. MAM acknowledges partial financial support under INTAS grant No 9.3- 
127. 

References 

111 Weyl H 1928 Z. Phys 46 1 
I21 Wigner E 1932 Phys. Rev. 40 749 
131 Shirokov Yu 1979 Pan. Nucl. 10 5 
[41 Kim Y and Wigner E 1990 Am. J. Phys. 58 439 
[SI Han D, Kim Y and Nor M 1988 Phys. Rev. A 37 807 
161 Tanas R, Mumkhametov B, Gantsog Ts md Chizhov A 1992 Qumfum O p t  4 1 
171 Leonhardt U and Paul H 1994 Pkys. Lett 193A 117 
[SI Raymer M, Beck M and McAlister D 1994 Phys. Rev. Leff. 72 I137 
[9] Han'is E G 1990 Phys. Rev. A 42 3685 

[lo] Isar A 1994 Helv. Phys. Acta 67 436 
[ I l l  Klimantovich Yu 1956 DoU A M .  Nmk SSSR 108 1033 
[I21 Han D, Kim Y and Noz M 1989 Pkys. Rev. A 40 405 
[I31 Yannussis A er al I982 Len. Nuow Cimenfo 34 553 
1141 Akhundova E, Dodonov V and Man'ko 1982 Physica A 115 215 
I151 Akhundova E, Dodonov V and Man'ko 1984 SOY. J. Theor. Phys. 60 413 
1161 Dodonov V and Man'ko 1979 Phys. Rev. A 20 550 
[I71 Ianssen A 1981 SIAM J. Math. Anal. 12 752 
[IS] Tatarski V I983 Usp Fir. Nauk 139 587 
[I91 Cartwright N G I976 Phyica A 40 210 


